Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-O-p-Toluenesulfonyl-2,3:4,5-di-O-isopropylidene-l-arabitol

Peter G. Jones, ${ }^{\mathbf{a} *}$ Piotr Kus ${ }^{\text {b }}$ and Rafal Celinski ${ }^{\text {b }} \boldsymbol{\dagger}$

${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Department of Chemistry, Silesian University, 9 Szkolna Street, 40-006 Katowice, Poland

+ Current address: Forensic Medical
Department, Silesian Medical Academy, 18
Medykow Street, 40-752 Katowice, Poland

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=143 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.100$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{SO}_{7}$, the absolute configuration was confirmed as S at all three chiral centres. Molecules are linked by three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

The title compound, (I), is a representative of a class of compounds important in the synthesis of polyhydroxyalkyl derivatives (Holy, 1978, 1982).

The molecule of (I) is shown in Fig. 1. The absolute configuration is confirmed as S at all three chiral centres C2, C3 and C4.

The conformation of the five-membered ring C2/C3/C10/ O8/C9 is approximately twist (local diad through O9 and the midpoint of $\mathrm{C} 3-\mathrm{O} 8$) and that of $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 13 / \mathrm{O} 6 / \mathrm{C} 7$ is approximately envelope (local mirror though C 4 and the midpoint of $\mathrm{C} 13-\mathrm{O} 6$).

Molecules are linked by three $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts that may be regarded as weak hydrogen bonds (Table 2); one, $\mathrm{H} 4 \cdots \mathrm{O} 17$, is much shorter than the others. The two contacts with purely translational symmetry operators link the molecules to form layers parallel to the $a c$ plane at $y \simeq \frac{1}{4}, \frac{3}{4}$ (Fig. 2).

Experimental

The title compound was synthesized starting from l-arabitol, as described by Holy (1982). Single crystals were formed when the mother liquor was left undisturbed.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{7} \mathrm{~S}$
$M_{r}=36.45$
Monoclinic, $P 2_{1}{ }_{1}{ }^{2}$
$a=7.9957(10) \AA$
$b=14.527(3) \AA$
$c=8.3194(14) \AA$
$\beta=94.93(2)^{\circ} \AA$
$V=962.8(3) \AA^{3}$
$Z=2$

Data collection

Stoe Stadi4 diffractometer ω / θ scans
Absorption correction: none 4605 measured reflections 4154 independent reflections 3891 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$

$$
\begin{aligned}
& D_{x}=1.333 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 52 \\
& \text { reflections } \\
& \theta=10-11.5^{\circ} \\
& \mu=0.20 \mathrm{~mm}^{-1} \\
& T=143(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.70 \times 0.50 \times 0.15 \mathrm{~mm} \\
& \\
& \theta_{\max }=27.5^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-16 \rightarrow 18 \\
& l=-10 \rightarrow 10 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 60 \mathrm{~min} \\
& \text { intensity decay: } 1.3 \%
\end{aligned}
$$

Received 18 December 2002 Accepted 20 December 2002 Online 10 January 2003

Figure 1
The molecule of the title compound, (I), in the crystal. Displacement ellipsoids are drawn at the 50% probability level. H-atom radii are arbitrary.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0531 P)^{2}\right. \\
& +0.2455 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.23 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983) } \\
& \text { Flack parameter }=0.01(7)
\end{aligned}
$$

$w R\left(F^{2}\right)=0.100$
$S=1.04$
4154 reflections
240 parameters
H -atom parameters constrained

Table 1
Selected torsion angles (\AA).

O9-C2-C3-O8	$29.19(19)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 10$	$-37.49(19)$
O7-C4-C5-O6	$-33.0(2)$	$\mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 10-\mathrm{O} 8$	$31.7(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 6-\mathrm{C} 13$	$24.3(2)$	$\mathrm{C} 3-\mathrm{O} 8-\mathrm{C} 10-\mathrm{O} 9$	$-12.0(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{O} 7-\mathrm{C} 13$	$30.2(2)$	$\mathrm{C} 4-\mathrm{O} 7-\mathrm{C} 13-\mathrm{O} 6$	$-16.1(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 8-\mathrm{C} 10$	$-10.7(2)$	$\mathrm{C} 5-\mathrm{O} 6-\mathrm{C} 13-\mathrm{O} 7$	$-6.2(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 17^{\mathrm{i}}$	1.00	2.48	$3.396(3)$	152
$\mathrm{C} 15-\mathrm{H} 15 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.61	$3.509(3)$	153
C24-H24 $\cdots \mathrm{O}^{\text {iii }}$	0.95	2.63	$3.521(3)$	156

Symmetry codes: (i) $x, y, 1+z$; (ii) $-x, \frac{1}{2}+y, 2-z$; (iii) $1+x, y, z$.
Methyl H atoms were identified in difference syntheses, idealized and then refined using rigid methyl groups $(\mathrm{C}-\mathrm{H}=0.98 \AA$ and $\mathrm{H}-$

Figure 2
Packing diagram of (I), projected parallel to the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been omitted.
$\mathrm{C}-\mathrm{H}=109.5^{\circ}$) allowed to rotate but not tip. Other H atoms were included using a riding model, with $\mathrm{C}-\mathrm{H}=0.95\left(s p^{2}\right), 0.99$ (methylene) or $1.00 \AA$ (methine). The absolute configuration was based on 1849 Friedel pairs.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Holy, A. (1978). Collect. Czech. Chem. Commun. 43, 3444-3465.
Holy, A. (1982). Collect. Czech. Chem. Commun. 47, 2786-2805.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). $X P$. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

